Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 891: 164624, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37277043

RESUMO

Overexploitation, habitat fragmentation, and flow alteration are major threats to freshwater biodiversity that can lead to fisheries collapse and species extinction. These threats are particularly alarming in poorly monitored ecosystems where resource use supports the livelihoods of numerous people. The Tonle Sap Lake in Cambodia is such an ecosystem, supporting one of the world's largest freshwater fisheries. Tonle Sap Lake fishes are the focus of indiscriminate harvest affecting species stocks, community composition and food-web structure. Changes in the magnitude and timing of the seasonal flood pulse have also been linked to declines in fish stocks. Yet, changes in fish abundance and species-specific temporal trends remain poorly documented. Analyzing 17 years' time series of fish catch data for 110 species, we show that fish populations have declined by 87.7 %, owing to a statistically significant decline for >74 % species, particularly the largest ones. Despite large variations in species-specific trends - going from locally extinct to >1000 % increase - declines were found across most migratory behaviors, trophic positions or IUCN threat categories, though uncertainty regarding the magnitude of effect precluded us drawing conclusions in some cases. These results, reminiscent of alarming declines in fish stocks in many marine fisheries, provide unequivocal evidence that Tonle Sap fish stocks are increasingly depleted. The consequences of this depletion on ecosystem function are unknown but will undoubtedly affect the livelihoods of millions of people, stressing the need to set-up management strategies aimed to protect both the fishery and its associated diversity. Flow alteration, habitat degradation / fragmentation - especially deforestation of seasonally inundated areas and overharvest - have been reported as major drivers in population dynamics and community structure, highlighting the need for management efforts aimed at preserving the natural flood pulse, protecting flooded forest habitats, and reducing overfishing.


Assuntos
Ecossistema , Pesqueiros , Animais , Conservação dos Recursos Naturais/métodos , Lagos , Peixes
2.
Sci Rep ; 13(1): 8571, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237013

RESUMO

Hydropower dams are a source of renewable energy, but dam development and hydropower generation negatively affect freshwater ecosystems, biodiversity, and food security. We assess the effects of hydropower dam development on spatial-temporal changes in fish biodiversity from 2007 to 2014 in the Sekong, Sesan, and Srepok Basins-major tributaries to the Mekong River. By analyzing a 7-year fish monitoring dataset, and regressing fish abundance and biodiversity trends against cumulative number of upstream dams, we found that hydropower dams reduced fish biodiversity, including migratory, IUCN threatened and indicator species in the Sesan and Srepok Basins where most dams have been constructed. Meanwhile, fish biodiversity increased in the Sekong, the basin with the fewest dams. Fish fauna in the Sesan and Srepok Basins decreased from 60 and 29 species in 2007 to 42 and 25 species in 2014, respectively; while they increased from 33 in 2007 to 56 species in 2014 in the Sekong Basin. This is one of the first empirical studies to show reduced diversity following dam construction and fragmentation, and increased diversity in less regulated rivers in the Mekong River. Our results underscore the importance of the Sekong Basin to fish biodiversity and highlight the likely significance of all remaining free-flowing sections of the Lower Mekong Basin, including the Sekong, Cambodian Mekong, and Tonle Sap Rivers to migratory and threatened fish species. To preserve biodiversity, developing alternative renewable sources of energy or re-operating existing dams to increase power generation are recommended over constructing new hydropower dams.


Assuntos
Biodiversidade , Ecossistema , Animais , Peixes , Água Doce , Rios , Espécies em Perigo de Extinção
3.
Ecol Lett ; 25(2): 255-263, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854211

RESUMO

Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Água Doce
4.
Sci Rep ; 11(1): 20508, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654859

RESUMO

Population genetic analyses can evaluate how evolutionary processes shape diversity and inform conservation and management of imperiled species. Taimen (Hucho taimen), the world's largest freshwater salmonid, is threatened, endangered, or extirpated across much of its range due to anthropogenic activity including overfishing and habitat degradation. We generated genetic data using high throughput sequencing of reduced representation libraries for taimen from multiple drainages in Mongolia and Russia. Nucleotide diversity estimates were within the range documented in other salmonids, suggesting moderate diversity despite widespread population declines. Similar to other recent studies, our analyses revealed pronounced differentiation among the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical isolation among these systems. However, we found evidence for finer-scale structure within the Pacific drainages, including unexpected differentiation between tributaries and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins together with coalescent-based demographic modeling suggests the ancestors of Tugur tributary taimen likely diverged in the eastern Amur basin, prior to eventual colonization of the Tugur basin. Our results suggest the potential for differentiation of taimen at different geographic scales, and suggest more thorough geographic and genomic sampling may be needed to inform conservation and management of this iconic salmonid.


Assuntos
Distribuição Animal , Espécies em Perigo de Extinção , Variação Genética , Salmonidae/genética , Animais , Evolução Biológica , Conservação dos Recursos Naturais , Mongólia , Filogeografia , Rios , Federação Russa
6.
Zookeys ; 958: 107-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863719

RESUMO

The Tonle Sap Lake in Cambodia is a crucial freshwater biodiversity hotspot and supports one of the world's largest inland fisheries. Within the Tonle Sap basin, freshwater molluscs provide vital ecosystem services and are among the fauna targetted for commercial harvesting. Despite their importance, freshwater molluscs of the Tonle Sap basin remain poorly studied. The historical literature was reviewed and at least 153 species of freshwater molluscs have been previously recorded from throughout Cambodia, including 33 from the Tonle Sap basin. Surveys of the Tonle Sap Lake and surrounding watershed were also conducted and found 31 species, 15 bivalves (five families) and 16 gastropods (eight families), in the Tonle Sap basin, including three new records for Cambodia (Scaphula minuta, Novaculina siamensis, Wattebledia siamensis), the presence of globally invasive Pomacea maculata and potential pest species like Limnoperna fortunei. This study represents the most comprehensive documentation of freshwater molluscs of the Tonle Sap basin, and voucher specimens deposited at the Inland Fisheries Research and Development Institute, Cambodia, represent the first known reference collection of freshwater molluscs in the country. In order to combat the combined anthropogenic pressures, including invasive species, climate change and dams along the Mekong River, a multi-pronged approach is urgently required to study the biodiversity, ecology, ecosystem functioning of freshwater molluscs and other aquatic fauna in the Tonle Sap basin.

7.
Glob Chang Biol ; 26(10): 5475-5491, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32602183

RESUMO

Climate warming has yielded earlier ice break-up dates in recent decades for lakes leading to water temperature increases, altered habitat, and both increases and decreases to ecosystem productivity. Within lakes, the effect of climate warming on secondary production in littoral and pelagic habitats remains unclear. The intersection of changing habitat productivity and warming water temperatures on salmonids is important for understanding how climate warming will impact mountain ecosystems. We develop and test a conceptual model that expresses how earlier ice break-up dates influence within lake habitat production, water temperatures and the habitat utilized by, resources obtained and behavior of salmonids in a mountain lake. We measured zoobenthic and zooplankton production from the littoral and pelagic habitats, thermal conditions, and the habitat use, resource use, and fitness of Brook Trout (Salvelinus fontinalis). We show that earlier ice break-up conditions created a "resource-rich" littoral-benthic habitat with increases in zoobenthic production compared to the pelagic habitat which decreased in zooplankton production. Despite the increases in littoral-benthic food resources, trout did not utilize littoral habitat or zoobenthic resources due to longer durations of warm water temperatures in the littoral zone. In addition, 87% of their resources were supported by the pelagic habitat during periods with earlier ice break-up when pelagic resources were least abundant. The decreased reliance on littoral-benthic resources during earlier ice break-up caused reduced fitness (mean reduction of 12 g) to trout. Our data show that changes to ice break-up drive multi-directional results for resource production within lake habitats and increase the duration of warmer water temperatures in food-rich littoral habitats. The increased duration of warmer littoral water temperatures reduces the use of energetically efficient habitats culminating in decreased trout fitness.


Assuntos
Ecossistema , Lagos , Animais , Gelo , Temperatura , Truta , Água
8.
Sci Rep ; 10(1): 9184, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513963

RESUMO

Summit Lake, Nevada (USA) is the last high-desert terminal lake to have a native self-sustaining population of threatened Lahontan cutthroat trout (Oncorhynchus clarkii henshawi). From spring 2015 to fall 2017, we quantified adult abundance and survival and the total annual spawning run. Abundance and survival were estimated with mark-recapture using PIT tags, and the annual spawning run was estimated with PIT tag detections and counts of spawners. Adult abundance fluctuated from 830 (95% CI 559-1248) to 1085 (95% CI 747-1614), with no overall temporal trend, as a decrease in male abundance was generally offset by an equal increase in female abundance. Estimated mean adult survival was 0.51 (95% CI 0.44-0.58). The spawning run increased from 645 (2015) to 868 (2016), but then decreased slightly to 824 (2017, mean = 789 ± 118). Female spawners increased in 2016 but decreased slightly in 2017, whereas male spawners decreased each year. In addition, the proportion of adults that spawned each year increased overall. Our study suggests that the adult population remained stable although most of the study period included the recent, severe regional drought in the western United States (2012-2016).


Assuntos
Oncorhynchus/fisiologia , Truta/fisiologia , Animais , Feminino , Lagos , Masculino , Nevada , Dinâmica Populacional , Estados Unidos
9.
Glob Chang Biol ; 25(11): 3883-3892, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31393076

RESUMO

Freshwater ecosystems are among the most diverse and dynamic ecosystems on Earth. At the same time, they are among the most threatened ecosystems but remain underrepresented in biodiversity research and conservation efforts. The rate of decline of vertebrate populations is much higher in freshwaters than in terrestrial or marine realms. Freshwater megafauna (i.e., freshwater animals that can reach a body mass ≥30 kg) are intrinsically prone to extinction due to their large body size, complex habitat requirements and slow life-history strategies such as long life span and late maturity. However, population trends and distribution changes of freshwater megafauna, at continental or global scales, remain unclear. In the present study, we compiled population data of 126 freshwater megafauna species globally from the Living Planet Database and available literature, and distribution data of 44 species inhabiting Europe and the United States from literature and databases of the International Union for Conservation of Nature and NatureServe. We quantified changes in population abundance and distribution range of freshwater megafauna species. Globally, freshwater megafauna populations declined by 88% from 1970 to 2012, with the highest declines in the Indomalaya and Palearctic realms (-99% and -97%, respectively). Among taxonomic groups, mega-fishes exhibited the greatest global decline (-94%). In addition, freshwater megafauna experienced major range contractions. For example, distribution ranges of 42% of all freshwater megafauna species in Europe contracted by more than 40% of historical areas. We highlight the various sources of uncertainty in tracking changes in populations and distributions of freshwater megafauna, such as the lack of monitoring data and taxonomic and spatial biases. The detected trends emphasize the critical plight of freshwater megafauna globally and highlight the broader need for concerted, targeted and timely conservation of freshwater biodiversity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Europa (Continente) , Água Doce
11.
Ecol Appl ; 17(8): 2281-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18213968

RESUMO

The ecological impacts of recreational fisheries are of growing concern and pose a number of unique management challenges. Here we report on our efforts to provide guidance for managing a recreational fishery for taimen, the giant Eurasian trout (Hucho taimen) in Mongolia. This species has declined dramatically across its range of Siberia and Central Asia, and is currently listed as endangered in Mongolia. Strong populations persist in remote regions of Mongolia because of limited anthropogenic impacts and harvest, though interest in the fishery is expanding rapidly. Current fishing regulations list the spring "opening date" for taimen fishing as 15 June, although regulations have not been consistently enforced, partially because taimen spawn much earlier than 15 June in much of the country. Through a combination of statistical models, climate data, knowledge of taimen biology, and geographic information systems (GIS), we model taimen spawning dates for potential habitat in Mongolia. A parametric bootstrap procedure was used to simulate variability in spawning date derived from inter-annual climate variability and model error, from which we estimated the date in which taimen spawning is predicted to occur with 90% confidence. We recommend the designation of three fisheries management zones, with corresponding opening dates of 20 May, 1 June, and 15 June. Our fishery opening date recommendations are less restrictive than existing regulations. Provided there is little or no catch-and-release fishing mortality, this approach serves both environmental and human needs by protecting taimen during the reproductive period, while still allowing a post-spawning catch-and-release fishery that benefits local economies and generates revenue (through fishing concession fees) for local conservation efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Pesqueiros , Peixes/fisiologia , Animais , Ecossistema , Feminino , Masculino , Mongólia , Reprodução/fisiologia , Estações do Ano , Temperatura , Água
12.
Integr Environ Assess Manag ; 1(4): 365-73, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16639903

RESUMO

Conservation of water quality is inherently tied to watershed management. Efforts to proect Lake Baikal have increasingly focused on the Selenge River, a major tributary, with more than half its watershed area in Mongolia. Placer gold mining in Mongolia has the potential to load total suspended sediment (TSS), and total phosphorus (TP) into Lake Baikal and destroy spawning areas for the endangered Taimen salmon (Hucho taimen taimen). This work describes water quality assessments performed from 2001 to 2003 on Mongolian tributaries to the Selenge River. Of 7 rivers sampled, rivers with proximal mining had the worst water quality. Elevated loading of TSS and TP was observed below mining regions on the Tuul River. Flooding could breach thin strips of land separating dredge pits from river channels, resulting in massive sediment loading. Extensive disturbance of the river terrace was apparent for many square kilometers. In the mountainous headwaters of the Yeroo River, tributary drainages undergoing mining had TP concentrations 8 to 15 times higher than the main stem. TSS was 7 to 12 times higher, and turbidity was 8 times higher. Alternative mining technologies exist that could minimize impact and improve the possibility for reclamation.


Assuntos
Conservação dos Recursos Naturais , Mineração , Poluentes da Água/análise , Monitoramento Ambiental , Ouro , Mongólia , Fósforo/análise , Rios , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...